NAOURI from the naoura in arabic means the water mill wheel
ABOUT NAOURI GROUP
Established in 1994 in Amman, Jordan, Naouri Group has grown into a regional group of companies in Jordan, Iraq and Palestine, employing over 800 people and covering a wide range of logistics services that are tailored to your individual company's requirements. Naouri Group is a family-owned and run company, inspired by a powerful sense of enterprise and has grown to become Jordan's leading logistics group. The Group’s hard working and resilient culture, its commitment to offering smart and effective solutions to its clients, and its great team are the key drivers of its success and the core of our values.
Naouri is a surname. Notable people with the surname include:
- Gabriel Naouri, French businessman
- Jean-Charles Naouri (born 1949), French businessman
- Jean-Yves Naouri (born 1959), French businessman
- Laurent Naouri (born 1964), French bass-baritone
- Rahamim Naouri (1902-1985), French-Algerian rabbi
A watermill or water mill is a mill that uses hydropower. It is a structure that uses a water wheel or water turbine to drive a mechanical process such as milling (grinding), rolling, or hammering. Such processes are needed in the production of many material goods, including flour, lumber, paper, textiles, and many metal products. These watermills may comprise gristmills, sawmills, paper mills, textile mills, hammermills, trip hammering mills, rolling mills, wire drawing mills.
One major way to classify watermills is by wheel orientation (vertical or horizontal), one powered by a vertical waterwheel through a gear mechanism, and the other equipped with a horizontal waterwheel without such a mechanism. The former type can be further divided, depending on where the water hits the wheel paddles, into undershot, overshot, breastshot and pitchback (backshot or reverse shot) waterwheel mills. Another way to classify water mills is by an essential trait about their location: tide mills use the movement of the tide; ship mills are water mills onboard (and constituting) a ship.
Watermills impact the river dynamics of the watercourses where they are installed. During the time watermills operate channels tend to sedimentate, particularly backwater.[1] Also in the backwater area, inundation events and sedimentation of adjacent floodplains increase. Over time however these effects are cancelled by river banks becoming higher.[1] Where mills have been removed, river incision increases and channels deepen.[1]
There are two basic types of watermills, one powered by a vertical-waterwheel via a gear mechanism, and the other equipped with a horizontal-waterwheel without such a mechanism. The former type can be further divided, depending on where the water hits the wheel paddles, into undershot, overshot, breastshot and reverse shot waterwheel mills.
The Greeks invented the two main components of watermills, the waterwheel and toothed gearing, and used, along with the Romans, undershot, overshot and breastshot waterwheel mills.
The earliest evidence of a water-driven wheel appears in the technical treatises Pneumatica and Parasceuastica of the Greek engineer Philo of Byzantium (ca. 280−220 BC). The British historian of technology M.J.T. Lewis has shown that those portions of Philo of Byzantium's mechanical treatise which describe water wheels and which have been previously regarded as later Arabic interpolations, actually date back to the Greek 3rd century BC original.[4] The sakia gear is, already fully developed, for the first time attested in a 2nd-century BC Hellenistic wall painting in Ptolemaic Egypt.
Lewis assigns the date of the invention of the horizontal-wheeled mill to the Greek colony of Byzantium in the first half of the 3rd century BC, and that of the vertical-wheeled mill to Ptolemaic Alexandria around 240 BC.
The Greek geographer Strabon reports in his Geography a water-powered grain-mill to have existed near the palace of king Mithradates VI Eupator at Cabira, Asia Minor, before 71 BC.
The Roman engineer Vitruvius has the first technical description of a watermill, dated to 40/10 BC; the device is fitted with an undershot wheel and power is transmitted via a gearing mechanism. He also seems to indicate the existence of water-powered kneading machines.
The Greek epigrammatist Antipater of Thessalonica tells of an advanced overshot wheel mill around 20 BC/10 AD. He praised for its use in grinding grain and the reduction of human labour.